Eletromagnetismo I — 2014 — noturno Décima lista

Tarefa de Leitura:

• Grifitths seção 9.4; Jackson seções 7.3 a 7.5, 7.8 e 7.9.

Exercício para o dia 25 de novembro:

Para ser entregue no dia 28 de novembro (DATA FINAL):

1. Dois meios dielétricos não condutores são separados por uma superfície plana, que escolhemos ser o plano z=0. Considere que as propriedades dos meios são dadas por $\epsilon_{1,2}$, $\mu_{1,2}$ e $n_{1,2}$. Uma onda plana, cuja freqüência é ω , propaga no meio n_1 , incidindo sobre a superfície de separação com um ângulo θ_I . Obtenha a onda espalhada e refletida no caso da polarização (\vec{E}_I^0) ser perpendicular ao plano de incidência. Analise com cuidado o caso em que $n_1 > n_2$ para ângulos maiores que θ_I^{limite} .

Exercícios complementares:

- 2. Duas ondas monocromáticas linearmente polarizadas e com a mesma frequência propagam-se ao longo do eixo z. A primeira onda está polarizada ao longo do eixo x e tem uma amplitude a, enquanto a segunda está polarizada ao longo do eixo y e a sua amplitude é b. A segunda onda está defasada em relação à primeira por χ . Encontre a polarização da onda resultante.
- 3. Uma onda plana com polarização linear incide sobre a interface plana de separação entre dois meios e é totalmente refletida. Assumindo que o campo elétrico da onda incidente tenha componentes perpendiculares e no plano de espalhamento, mostre que a onda refletida tem polarização elíptica. Dica: utilize os resultados conhecidos para polarizações lineares no plano de incidência e perpendiculares a ele.
- 4. A partir das equações de Maxwell obtenha a equação de onda para os campos \vec{E} e \vec{B} para um meio linear com condutividade σ .

- 5. Uma densidade de carga livre ρ é colocada em um meio cuja condutividade vale σ . Mostre que densidade de carga decai exponencialmente.
- 6. Uma onda eletromagnética de freqüência ω propaga-se em um meio cuja constante dielétrica é dada por $\epsilon = \epsilon_R + i\epsilon_I$, onde $\epsilon_{R,I}$ são constantes independentes de ω . Encontre os campos elétrico e magnético assumindo que

 $\vec{E} = E_0 \ \vec{i} \ e^{i(kz - \omega t)} \ .$

7. Encontre a velocidade de fase e de grupo para um meio cuja constante dielétrica é dada por

$$\epsilon = \epsilon_0 \left(1 + \frac{\omega_p^2}{\omega_0^2 - \omega^2} \right) .$$

Assuma que $\mu = \mu_0$.

8. Na ausência de absorção a constante dielétrica de um plasma é dada por

$$\epsilon = \epsilon_0 \left(1 - \frac{q^2 N}{\epsilon_0 m \omega^2} \right) .$$

Discuta a propagação de ondas eletromagnéticas de frequência ω neste plasma.