LISTA I - TD I (02/03/2013)

Física IV - Noturno

- 1. Um fio longo com densidade uniforme de carga λ está cercado por isolamento de borracha até o raio **a**. Calcule o campo **D** em todo o espaço. É possível calcular o campo **E** em todo o espaço?
- 2. Um capacitor esférico de raio interno \mathbf{a} e raio externo \mathbf{b} , com cargas +Q e -Q, respectivamente, tem o espaço entre as placas metálicas totalmente preenchido por duas camadas concêntricas de dielétricos diferentes superpostas, uma de espessura $\mathbf{c} \mathbf{a}$ e constante dielétrica κ_1 e outra de espessura $\mathbf{b} \mathbf{c}$ e constante dielétrica κ_2 .
 - (a) Calcule os campos \mathbf{D} e \mathbf{E} em todo espaço assumindo a linearidada, ou seja, que $\mathbf{D} = \epsilon \mathbf{E}$.
 - (b) Calcule a desidade de carga de polarização volumérica.
 - (c) Calcule as desidades de carga de polarização superficiais nas superficies de raio **a**, **c** e **b**.
 - (d) Repita o ítem (c) para as densidades de carga livre.
 - (e) Repita o ítem (c) para as densidades de carga total.
 - (f) Calcule a capacitância deste capacitor.
- 3. O espaço entre as placas (de área A) de um capacitor plano está preenchido por duas camadas dielétricas adjacentes de espessura d_1 e d_2 e constantes dielétricas κ_1 e κ_2 , respectivamente. A diferença de potencial entre as placas é V e o campo aponta de 1 para 2.
 - (a) Calcule os campos \mathbf{D} e \mathbf{E} em todo espaço assumindo a linearidada, ou seja, que $\mathbf{D} = \epsilon \mathbf{E}$.
 - (b) Calcule a capacitância do sistema.
 - (c) Calcule a densidade superficial de carga livre σ nas placas.
 - (d) Determine o vetor de polarização P em cada dielétrico.
 - (e) Determine as diversas distribuições de cargas livres e de polarização.

- 4. Uma esfera de material dielétrico homogêneo com constante dielétrica κ , de raio \mathbf{a} , está uniformemente carregada com densidade volumétrica de carga ρ .
 - (a) Calcule os campos \mathbf{D} e \mathbf{E} em todo espaço assumindo a linearidada, ou seja, que $\mathbf{D} = \epsilon \mathbf{E}$.
 - (b) Ache a diferença de potencial V entre o centro e a superfície da esfera.
 - (c) Calcule a densidade de carga de polarização volumétrica da esfera.
- 5. Considere uma esfera dielétrica de raio ${\bf R}$ e polarização uniforme ${\bf P}$.
 - (a) Calcule as densidades de carga de polarização superficial e volumétrica.
 - (b) Calcule o campo elétrico dentro da esfera em função da polarização **P**. Dica: calcule o campo elétrico resultante da superposição de duas esferas de raio R uniformemente carregadas com densidade volumétrica de carga $+\rho$ e $-\rho$, respectivamente, cujos centros estão deslocados de uma distância d.